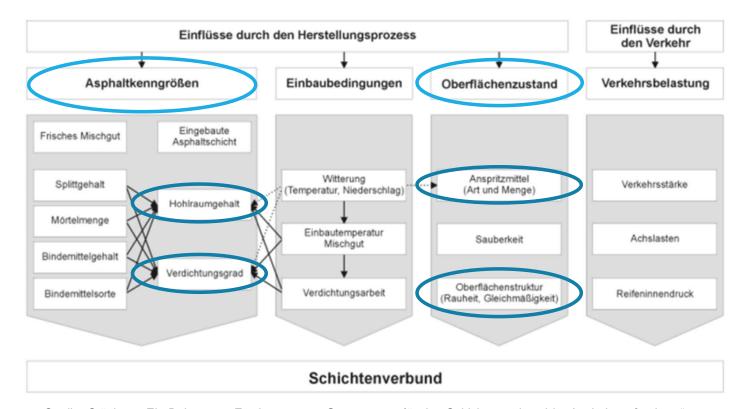

GRUNDLAGEN SCHICHTENVERBUND

Der Schichtenverbund entsteht an der Schichtgrenze zwischen zwei aneinandergrenzenden Asphaltlagen und dient der Kraftübertragung aus Eigenlast, Verkehrslasten und Temperatur.

- Verbundmechanismen
 - Verzahnung der Gesteinskörnung
 - Reibung durch Normalkräfte an den Kontaktflächen
 - Verklebung aus Bitumen und Bitumenemulsion
 - Der Anteil am Lastabtrag ist vom Einzelfall abhängig
- Bauweisen
 - heiß auf heiß
 idealer Verbund
 - heiß auf warm 🛽 Kompromiss
 - heiß auf kalt
 Verwendung Bitumenemulsion
- Lasteinwirkungen aus horizontalen und vertikalen Kräften
 - statische Lästen
 Achslast und Eigengewicht
 - quasi-statische Lasten

 Bremsen und Beschleunigen
 - dynamische Lasten
 Schwingungen und Vibrationen



Quelle: TU Wien, "Eine ewige Verbindung? – Zum Schichtenverbund im Asphaltstraßenbau,".

TECHNISCHE UNIVERSITÄT DARMSTADT

GRUNDLAGEN SCHICHTENVERBUND

Quelle: Stöckert, "Ein Beitrag zur Festlegung von Grenzwerten für den Schichtenverbund im Asphaltstraßenbau," 2002.

PROBLEMSTELLUNG UND ZIELSETZUNG

PROBLEMSTELLUNG

- ➤ Faktor Schichtenverbund für die Nutzungsdauer von Asphaltbefestigungen
- ➤ Beschädigungen des Schichtenverbundes durch Bauabläufe
 - > Kalkhydratsuspension als Schutzschicht
- ➤ Einfluss der Kalkhydratsuspension auf den Schichtenverbund ist offen
 - Keine Erwähnung in den geltenden Regelwerken

ZIELSETZUNG

- ➤ Bestimmung des Einflusses der Kalkhydratsuspension unter Laborbedingungen
 - Herstellung von zweischichtigen Asphaltkörpern
 - Prüfung ohne und mit Kalkhydratsuspension
- > Auswirkung der Asphaltschichtart
 - ➤ Wahl von 5 praxisnahen Schichtsystemen

PROBLEMSTELLUNG UND ZIELSETZUNG

- > Abfahren der Bitumenemulsion
 - > Haftung an den Reifen
 - > Verschmutzung

25.03.2025

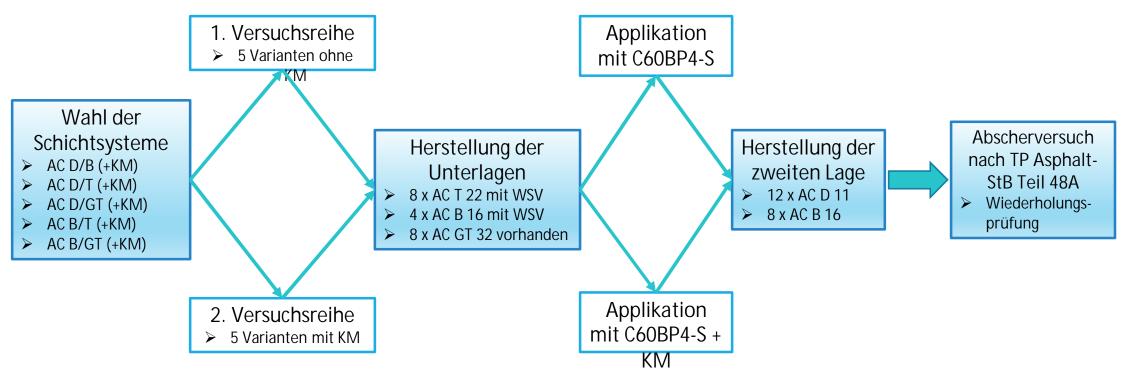
➤ Auftragen von Schmutz auf der Oberfläche

TECHNISCHE

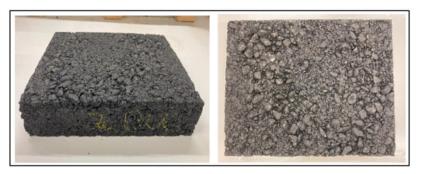
KALKHYDRATSUSPENSION - KALKMILCH

- Dient zum Schutz des Schichtenverbundes, indem Anhaftungen und Abtragungen der Bitumenemulsion verhindert werden.
- Im Ausland seit über 25 Jahren im Einsatz.
- Erfolgreiche Testflächen bereits auch in Deutschland erstellt.
 - Keine Veröffentlichung von Forschungs- o. Untersuchungsberichten
- Vorteil: Verhindert Anhaftungen der BE an Baustellenfahrzeugen.
 - Besonders in den heißen Sommermonaten von Vorteil
 - Reduziert Schadstellen und Verschmutzung

 weniger Nach- u. Ausbesserungsarbeiten
 - Schutz des Schichtenverbundes


 keine negativen Auswirkungen

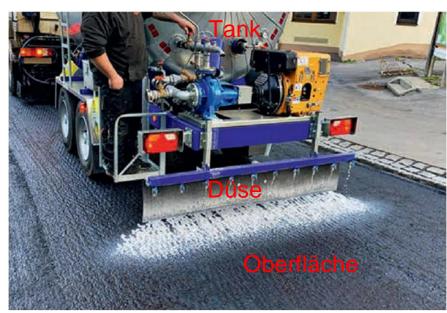
UNTERSUCHUNGSMETHODIK

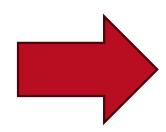


HERSTELLUNG PROBEKÖRPER

Die Herstellung der Unterlage und der zweiten Lage wurde entsprechend TP Asphalt-StB Teil 33, welche auf DIN EN 12697-33 basiert, mit dem Walzsektor-Verdichtungsgerät durchgeführt.

- Schichtdicke Unterlagen, nach ZTV Asphalt-StB und der KGV
 - \rightarrow AC 16 BS = 6,0 cm
 - \rightarrow AC 22 TS = 8,0 cm
- Schichtdicke zweite Lage, nach ZTV Asphalt-StB und der KGV
 - \rightarrow AC 11 D = 4,0 cm
 - \rightarrow AC 16 B = 6,0 cm
 - ➤ AC 16 B/T = 4,0 cm ② Anpassung aufgrund einer Limitierung des WSV
- Verdichtungstemperatur, in Abhängigkeit vom Bitumen
 - Asphaltdeckschicht 145 °C
 - Asphaltbinderschicht 145 °C
 - Asphalttragschicht 135 °C







VWB

APPLIKATION BITUMENEMULSION UND KALKMILCH

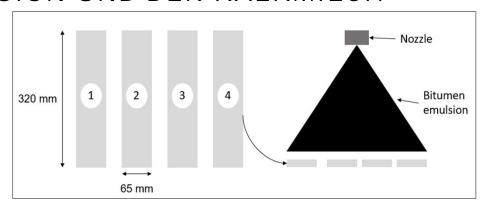
Quelle: Nadler Straßentechnik, "Kalkmilch zum Schutz des Schichtenaufbaus optimal verteilen," 2023

TECHNISCHE UNIVERSITÄT DARMSTADT

VWB

APPLIKATION DER BITUMENEMULSION UND DER KALKMILCH

APPLIKATION DER BITUMENEMULSION UND DER KALKMILCH



Bitumenemulsion	Ansprühmengen [g]			
	Pos. 1	Pos. 2	Pos. 3	Pos. 4
C40 BF5-S	0,5	0,4	0,4	0,4
C40 BF5-S	0,7	0,6	0,5	0,7
C60 BP4-S	2,5	2,3	2,5	2,3
C60 BP4-S	2,1	1,9	1,8	2,0

APPLIKATION DER BITUMENEMULSION UND DER KALKMILCH

Optisch vollständig gebrochene BE bei AC 16 B und AC 22 T

- ➤ Gleichmäßige Verteilung
- ➤ Einhaltung der Ansprühmenge von 250 g/m²

Optisch vollständig gebrochene BE bei AC 32 GT

- ➤ Gleichmäßige Verteilung
- Einhaltung der Ansprühmenge von 250 g/m²
- Bildung von Pfützen in den Rillen

25.03.2025 Institut für Verkeniswegebau 10 Darmstadt | Mildderidon

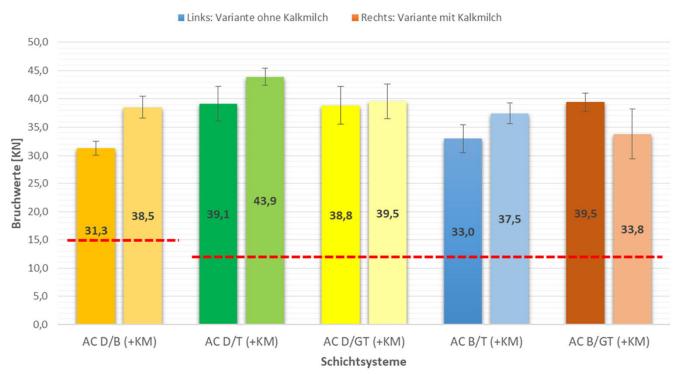
VWB

APPLIKATION DER BITUMENEMULSION UND DER KALKMILCH

- > Rückstände nach dem Brechvorgang
- ➤ Ablagerungen in den Rautiefen
- > Bedeckung der Bitumenemulsion

ABESCHERVERSUCH NACH LEUTNER

- > Entnahme von 150 mm Bohrkernen
- > Temperierung der Proben auf 20 °C
- ➤ Maximale Scherkraft in KN
- > Scherweg in mm



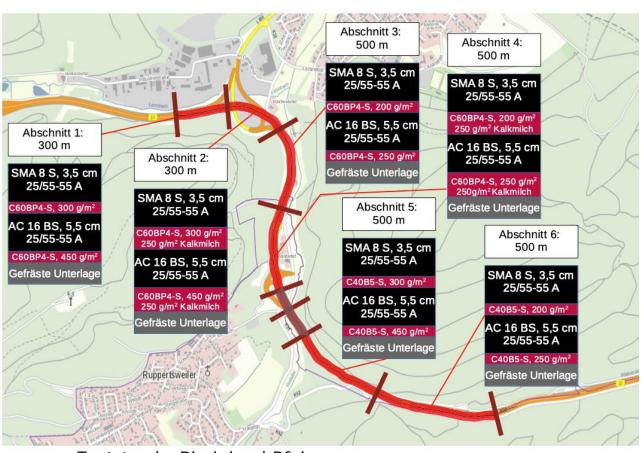
ABESCHERVERSUCH NACH LEUTNER

Vergleich der Abscherversuche nach TP Asphalt-StB Teil 48A

Ergebnisse Laborsimulation

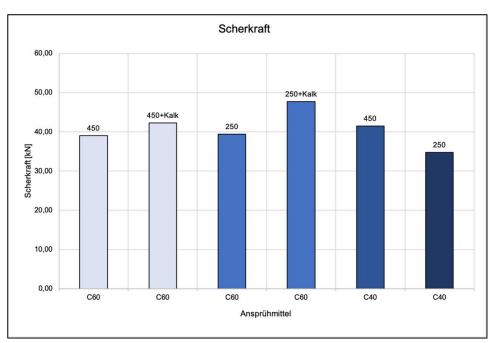
TECHNISCHE UNIVERSITÄT DARMSTADT

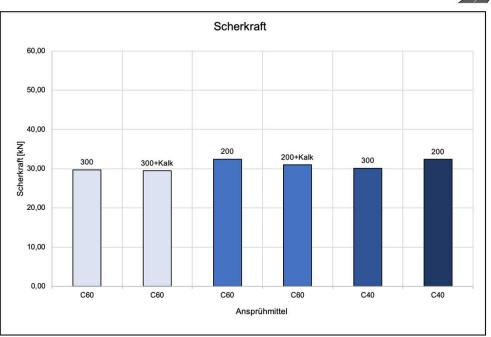
SCHERFLÄCHEN



Institut für Verkehrswegebau TU Darmstadt | Middendorf

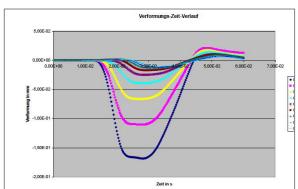
TESTSTRECKE

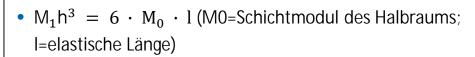



Teststrecke Rheinland-Pfalz

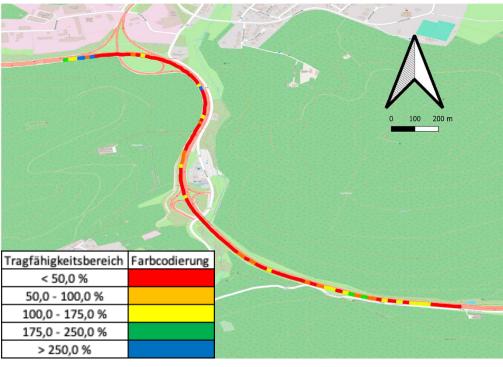
TESTSTRECKE - ERGEBNISSE

Ergebnisse zwischen Binderschicht/Tragschicht gefräster Unterlage - Münchweiler




Ergebnisse zwischen Deckschicht/Binderschicht neu hergestellt Unterlage - Münchweiler

TESTSTRECKE - ERGEBNISSE



•
$$M_1 h_{i,rel}^3 = \frac{M_1 h_{i,FM}^3 - M_1 h_{i,EM}^3}{M_1 h_{i,EM}^3}$$

- M₁h_{i,EM}: Wert aus der Erstmessung
- M₁h_{i,FM}: Wert aus der Zweitmessung

Ergebnisse Tragfähigkeitsmessung

BEWERTUNG DER ERGEBNISSE

SCHLUSSFOLGERUNG

Keine negative Beeinflussung des Schichtenverbundes durch Kalkhydratsuspension erkennbar

➤ Bei allen untersuchten Schichtsystemen

Mögliche Auswirkung auf die Verklebung

- ➤ Größte Differenz bei AC D/B (+KM)
- Geringste Differenz bei gefrästen Unterlagen

AUSBLICK

Eine tatsächliche Verbesserung bleibt zu prüfen!

Genauerer Einfluss auf die Verklebung

- > mittels Haftzugfestigkeit untersuchen
- Verbesserte Haftung zwischen GK und Bitumen

Begünstigung des Brechvorganges der BE

- Zeitspanne Applikation BE bis Einbau Asphalt
- Einfluss auf den Abbindevorgang

Offene Fragen für Anwendung

- Entmischung der Suspension
- > Schutz der BE vor Baustellenverkehr

21

Vielen Dank für Ihre Aufmerksamkeit!

Prof. Dr.-Ing. Jia LIU

Institut für Verkehrswegebau

Kontakt: sekr@vwb.tu-darmstadt.de

